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SUIARY

A solution based. upon small-deflection theory is presented
for te critical shear stress of curved rectangular panels with
simply supported edges, Computed curves which cover a wide range
of panel dimensions are presented; these curves are found. to be
in good agreement with test results. Estimated curves are also
given for panels with cl=mped edges.

INTRODUCTION

A series of papers has been prepared to provide information
on the buckling of curved. sheet. The pr:oblem treated. in the
present paper, which is a part of that series, is the determination
of the critical shear stress of a cylindrically curved rectangular
panel, For panels having simply supported edges this problem is
solved theoretically (see ap~p:endix), and computed. curves are provided
for finding the critical shear stress. Estimated results are also
given for curved. rectangular panels having clamped edges.

RESULTS AND DISCUSSION

The critical shear stress T for cylindrically curved. panelscr
is given by the equation

cr k s i 2 D

where

ks  critical-shear-stress coefficient, established by geometry of
panel and. type of edge support
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D flexural stiffness of panel per unit length 
( Et3

(" 12(1 - 2)

E Young's modulus of elasticity

Poisson's ratio

b axial or circumferential dimension of panel, whichever is
smaller (except where noted)

t thickness of panel

Two charts are presented, one for panels having curved sides
longer than the straight sides and the other for panels having
straigbt sides longer than the curved. sides. In each of these
charts the critical-shear-stress coefficienit ks is plotted

against a curvature parameter Z defined by the equation

z -

2rt

or

where

r radius of curvature of panel

Panels with simplysuoorted edges.- The critical-shear-stress
coefficients k for curved panels with simply supported edges are
given in figures 1 and 2. in figure 1, the critical-shear-stress
coefficients are given for panels long in the circumferential
direction; b is measured axially with the result that the values
of k. arnd Z are defined in the manner appropriate to a cylinder.
In figure 2, the critical-shear-stress coefficients are given for
panels long in the axial direction; b is measured circumferentially
so that the values of k and Z are defined in the manner appropri-
ate to an infinitely long curved strip. The solid curves in each
figure are computed, and the dashed curve in figure 2 is estimated
by a method described in the section entitled "Estimation of Critical
Stress."
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With regard to displacements in the median surface during
buckling, the boundary conditions for which the curves of figures 1
and 2 apply are zero displacement along each edge and unrestrained.
motion no=mal to each edge. The available evidence indicates that
if both no: mal and tangential motion were completely restrained,
the curves of figure 1 would be raised only slightly, but the curves
of figure 2 might be raised considerably at intermediate values of Z
for large values of panel length-width ratio a/b. (See section on
critical shear stress of curved panel in reference I.)

In figure 1 all the buckling curves for panels of fixed length-
width ratio approach the curves for a complete cylinder at high
values of Z. The same trend exists when the axial length is greater
than the circumferential lergth, as the curves of figure 2 suggest
by approaching the slope 0.7.5 appro-priate to cylinder curves at high
values of Z. This result can be explained by the fact that
geometrically a curved panel of any given length-width ratio approaches
a cylinder as the curvature increases. Panels having a large ratio
of circumferential length to axial length approach a cylinder at
lower values of Z (defined as in fig. 1) than panels having a small
ratio of circumferential length to axial length.

Estimation of critical stress.- A comparison of the computed
results for the critical stress coefficients of simply supported
curved panels (figs. 1 and 2) with results for certain known limiting
cases indicates the possibility of making reasonable estimates for
panels of other length-width ratios and edge-support conditions. The
known limiting cases used in this comparison are the critical stress
coefficients for the flat panel (Z = 0), the complete cylinder, and
the infinitely long curved strip. (See fig. 3.) Figure 4 shows the
comparison for panels long in the circumiferential direction. In order
to permit the comparison, the curve for the strip was plotted by using
the same parameters as were used in the other curves; that is, ks and
Z were defined. in terms of the axial rather than the circumferential
dimension of the panel (dimension b1 in fig- 3). Figare 5 shows
the corparison for panels long in the axial direction. The cylindercurve is replotted in terms of dimension b2 in figure 3 so that

the same parameters are used as were used for the other curves.

In each of figures 4 and 5 the first three panel buckling curves
were co,:puted and. the fourth curve was estimated. These estimated
curves were obtained by using the known limiting results as guides
and by extrapolating the trends observed in the cases from which
computed results were available.

Panels with clamped edges.- Figures 6 4nd 7 give estimated
theoretical critical-shear-stress coefficients for curved. panels
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with claznpecl edges. The estimates were made in the aforementioned
manner by making use of the known shear-stress coefficients for
cylinders and for long curved strips with clamped edges (references 2
and 3, respectively) end available results for flat panels (refer-
ences 4 and 5) and by extrapolating from the knoi., results for simply
suppo.rted panels. With respect to edge displacements in the median
surface during buckling, the boundar; conditions for which the curves
of figures 5 and 6 apply are zero displacement normal to each edge,
end unrestrained motion along each edge. The available evidence
indicates that complete restraint of both noral and tangential
motion would affect the curves of figures 5 and 6 only slightly.

(See discussion of bound-cary conditions in reference 1.)

Eyperimental Verification

A study of references 6 to 10, ;.Thich contain test data on the
critical shear stress for curved sheet, revealed that in thie various
investigations different types of test specimens (fig. 8) and also
different methods of defining the ex-perimental critical stress were
used. Because of the different types of test specimens and different
methods used, a wide range of values for the critical stresses mast
be expected. In orde," to make the comparison between theor and
experiment, therefore, the test data were divided into two groups
according to whether the buckling load would be appreciably affected
by initial eccentricities (fig. 9). The theoretical curves used.
were those for simply supported curved panels.

Experimental buckling stresses only slightly affected by initial
eccentricities.- With but three exceptions, the experimental critical
stresses of Rafel (reference 6) and of IRafel and Sandlin (reference 7)
correspond to snap buckling (fig. 9(a)). With any appreciable initial
eccentricities, deflections tend to increase gradually with load and
no snap buckle occurs; this fact indicates that the initial eccen-
tricities in the test specime.ns are small. The three specimens in
which snap buckling did not occur fell in the range of 6<z< 12,
and the buckling stress was taken to correspond to the load at which
the compressive diagonal stress on one side of the sheet ceased to
increase with increasing load. The critical loads for the Moore and
Wescoat data were obtained from the loads corresponding to the top
of the knee of the torque-.twist cur.ves (reference 8). The torque--
twist curves represent averages of the behavior of ell the panels in
the cylinders of reference 8 and are thus relatively insensitive to
local imperfections, Figure 9(a) indicates that buckling stresses
defined in such a way as to be rather insensitive to local imper-
fections are in good agreement with, but slightly lower than, the
theoretical critical stresses for curved panels with simply supported
edges.
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E-rerimental buckling stresses considerabl affected by initial
eccentricities.- Tn the tests by Chiarito (reference 9) the critical
stress is defined as the stress at hich wri.h.ing first becomes visu-
ally perceptible in any panel of a multipanel specimen. Except for
one snan buckle, the critical stresses in the tests by KILihn and Levin
(reference 10) were defined by the point of first departure from a
straight line of the curve obtained by plotting the readings of a
dipgonally mounted Tuckerman optical strain gage against the applied
load. In both of these methods initial eccentricities of the test
specimens can be expected to result in relatively low experimental
critical stresses.

A comparison between the theoretical critical stresses for curved
panels and the experimental critical stresses of Chiarito and of
Kuhn and Levin is made in 9 igiure 9(b). As might be expected because
of sensitivity to loca. l imperfections, the ex-perimental data are,
in general, considerably below the theoretical curves. The data

of Kuhn and Levin for '- = 3 at lar;e values of Z, however, are
b

appreciably above the theoretical curves. One possible explanation
for this rather surising behavior is that all specimens for a = 3

b
had two intermediate bulkheads which were not attached to the sheet
but may have provided additional restraint against buckling at high
curvatures by preventing inward displacement of the sheet on buckling.

CONCLUDING E4A JAKS

The critical shear stresses given by a theoretical solution
based on small-deflection theory for simply supported curved rec-
tangular panels were found to be in good agreement with experimental
critical stresses defined in such a way as to be rather insensitive
to local imperfections. A method is suggested for estimating the
critical shear stresses for curved panels having length-width ratios
and types of edge support different from those for which computed
results are available.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Peronaitics

Langley Field, Va., March 11, !947
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APPENDIX

THEORETICAL SOTJTION

Symbols

a axial or circumferential dimension of panel,
whichever is larier

b axial or circrimforential dimonsion of panel,

whichever is smaller

v. n, p, q integers

r radius of curvatrre of panel

t thichness of panel

u dispa:cemont of points on median surface of panel
in axial (x-) direction

v displacement of points on median surface of panel.
in circumferential y-) direction

w displacement of points on median surface in radial
direction; positive outward

x axial coordinate of panel

y circumferential coozrdinate of panel

D flexural stiffness of panel per unit

-1 ( - 2

E Youngts modilus of elasticity

Airy's stress function for median-surface stresses

produced by buckle deformation -F shear
QQ - y

stress; 2- compressive stress in y-direction;

6- compressive stress in x-directic'
oy2J n
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z curvature parameter ( l 2krt

amn coefficients of terms in deflection functions

ks  critical shear-stress coefficient appearing in
k kst 2D

formula T -cr

b2
t

= I2 (p2 , c212)2+ I2p3kP kZ2

Mpq 3233ks L I(,2 + q2P2) 2

NP = 32p3ks I + + (p2p2 + q2)2

L

"b

Poisson's ratio

T cr critical shear stress
v2 ;2 j,2

2 B2

17 = + 20
TX2 % 2 ~174 = 61t + 2 c 4 + 4

" X4  423y2 y4

-4 inverse of V 4 defined by V-4( = w

Method of Solution

Equation o equilibrium.- The critical shear stress which causes
a curved rectangular panel to buckle may be obtained by solving the
following equation of equilibritm (reference 1).

4 Et v-4 X4, 2 t % =o
D~w+TV ~I~~2 cr ~:~

where x and y are, respectively, the axial and circumferential
coordinates. Division of equation (1) by D gives

)4 12Z2  _"  w + 2k 12 __ = 0 (2)
w+-V b2
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The ecjuation of euibimVma be reprcono-ted by

0 (3)

where Qis the oveator d-finea- by

b4 l27 b2 ay(4
ox b2 O y

Sclution fo aeshavinm ez, al 1onYE roae thncicmf or -
ntalerkzth. - EquatCion', 3,' may be -ol.ve -by the Galerkin method, as

outlined- in references 1 and. 11. Pis suye-restecl in recference 1 f or
simjply supoortod curved- rectangular panels, thie followingl series
exanbion is nled- orW:

SC

an %n sin M~xsin -- Z (5
a b(5

The ccorainate system used is shoi'm in figvxe 10(O) The coef fi cients
C.. re then chosen to satisfy the egiimltica-s

/ pa/ lbsin -!EsnMYXT xd 6

whore

p 12,and- q =1,2.,

Whcnn the oporatio-ns ind-icated in equation (6) arc, perfor,-med-, a set
of haooeneous in-cr alge'braic equations in the anknon ccefficilents

aT sob4-ai.ned wi'k h k, rcajn as a rr2cr.The Solution

f or tile critical- shear -stress coefficient k. is then found as the

minimum value of kc. for which the algebraic equations havre a

nonvanishing solution for the unin-ms aPC.

The bound-cary conditions at each ed-ge that are implied, by this
meothod of solution arc ze-'o radli adeflecti on and edge mna-oent,' no
displacement a-long the ed-go, and Ire dioae tnrmalt h
edrge (see reference 12); that is,
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w(o,y) = -,(a,y) = 0 .(x,o) = w(x,b) = 0

(O~y) = a, y) =0 21 x)=-YX xpb)
o2 -aY22

v(oy) = v(a,y) = o u(x,o) u(X,b) = 0

(o,y) a- (a,y) 0 o 2= (X,o) =2-F (x ,) =0

Substitution of the values of Q and w given by equations (4)
and (5), rcspectively, intbo equation (6) leads to the following set
of' algebraic equations:

2 0

a, .2+ q2p2) 2 + t? !22 2 '

+m . (8)
Ir-Z n (j P2) (n2 . q2)

where p = 1,2, . . q = 12, . . and the si.mmation includes
only those values of .m and. n for which m t p and n ± q are
odd. The condition for a nonvanishing solution of these equations

is the vanishing of the determinant of the coefficients of the
unknowTn qn n hic infinite determinant- can be factored. into the

product of two infinite subdeterminants, one in which p t q is

even, and one in which p t q is odd. The vanishing of these
subdetorminants loads to the following detenminantal equations.
The equation in which p t q is even is
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aaa a a a a a a111- 22 3115 33 17 a26 31..}=!, ~3 -6 % 35 .o. - oo 3 .

4 4 M22 0 0 0 0 0 L
g ~ 9i 0, !5 3 0

p-1,q=3 0 - 13 k 0 0 - 0 0 0 ...

5 25 i

-0 -42 0 __P=J q=o1  - o o -, 0
277p=2, .=1 -- 0 2 M-2 48 7

....~0 62 0.. - k 0.. .. ...2 0 0 ..

1 5 7 25 27 35 99 (

i-3, q=3 1 0 0 0 -- a M3 0 0
25 35 125

,, 0 0 M17 0 0 01.35 99 13

IL 4 6 2 0 0 LCL -2 .8 jp=2, q=6 - 0 -!6. ,3 o6.~_ j {- .5
1359 175 11 125 13 D"

i=3, q=51 o o 0 0 o M357 3
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and the equation in which p + q is odd is

a1 2  a2 1  a14 a2 3  a3 2 a1 6 a2 5 a3  a1 8 a2 7

p=l, q=2 " 1 2 - 0 0 2 0 0 28
9 5 63 135

p=2, q -=1 - 21  0 0 8 6 0
9 45 5 35 25 i89

8 =14 0 00 56:, = o 7-#o7 2-( o o 99" '

D=2 , q=3 o - M2 3  0 - :- I o . .
5 7 25 9 35 55

p=3) q=2 0 0 -6 H2 0 28
, - 7 75

p=1z, cj6 o ilL 0 _1 0 N16  2 0 0 28
35 9 11 13

=0

p=2, q=5 20 0 -1 ,o 0 - 00 M2 5  80 0
63 27 7 11 3 117

p=30 8 72 o o 8 "1 0
2535. 5

=,q=8  0 0 .i 0 0 .1- 0 .

189 55 117 45

~28 L_0£ o 26 o 8 28 o 11 l 2'T2
p=.2, q=71 5 9 75 13 55 45

o)
where

N - (12 + q2p2) 2 + ,2!3p ZPq b f~k q pi ~2j
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These determinants give the buckling loads of cUrved panels with
various len7,th-widtLh ratios (f > .) for buckle .patters respectively
syzetri'a! and. antinietrica abou; the eerier of the panel.

By use of a finite determinant including the rows and columns
corresponding to the most imortant terms in the expansion for w
(eauation (5)), equations (9) and (10) were solved by a matrix
iteration method. (reference 13) for the lowest value of k s which

satisfied those equations. The lower of the two values of ks

found by solving equations (9) and (10) is the critical-shear-stress
coefficient for the particullar valucS of and Z under consider-
ation. The cuaive of critical-shear-stress coefficient against Z
for a given value of g computed in this manner shows cusps; however,
as the precise location of all the cu-sps involves a prohibitive amount

of labor without any significant increase in accu-racy, the cusps were
faired out in figure 2. Ta'ble I presents the relative magnitudes of
the coefficients- of the terms used in the solutions, and table 2
gives the computed stress coefficients.

Solution for ranels havinr, circumferential lenth zreater than
axial lenpth.- Whien the circuJferential diension is greater than the

axial dimension, a and b can be interchanged in cquation (5) in
order to retain b as the shorter dimension, as follows:

w c a sin sin (11)
b a

The coordinate system used is shown in figure 10(b). This problem
is solved in a marner similar to that used in solving the problem
involving axial dimension greater than circumferential dimension.
The set of algebraic equations for the umknoin Fourier coefficients
is now

a, 3(p + C2)2 + Z2p CI 1.( 2 p2 + UL)-

(12)

m2 l n'l (i 2 
- p2)(n2 _12)

where m t p and n ± a must be odd for amn to have a value. The
condition for a nonvanishing solution of these equations is the
vanishing of the determinant of the coefficients of the unnowns aem.
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This determinant can be factored into two infinite subdetermInants
which a.e identical to thorp in equations (9) and (10) except for
the diagonal terms. In this case, each diagonal term Mpq is
replaced by

N _(p2p2 + q2 )2 +

32P3ks + 2 )2

The conditions for the vanisling of these determinants were
found in.the same manner as that used in solving equations (9)
and (lO) for buckling loads of pa2.;oJs with various length-width
ratios for buckle patterns symnetrical or antisymetrical about the
center of the panel. The louer of the two vwlues of ks is the
critical-shear-stress coefficient for th> particular values of
and Z under consideration. The relative magnitudes of the coef-
ficients of the terms used and the computed stress coefficients are
presented in talles 1 and 2, respectively. Figure 1 shows the
critical-shear-stress coefficients for simply supported curved
panels having the circumferential length greater than the axial
lcngthl the curves were faired in a manner similar to that for the
curves of figure 2.
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TABLE 1

RELATIVE MAGNITUDES OF IlEFLECTION-FUNCTIO1 COEFFICIENTS I IN SOLUTION

Even determinant

b Z all 13 822 a31  815 a24 a33 a42 851 a17 126 83 5 44 8 3 1a6 828 8 37 a4 6 8 5  %a4 8 5 7

1 1 1 -0.07 -0.30 -0.07 -0.005 -0.004 0.04 -0.002 ----- --.------ 0.004 -0-003 -------------------------------

10 1 -. 13 .43 -. 12 -- 007 -. 005 -07 -. 007 ----------. 0005 .008 ----------.----------------------------

30 -. 75 .57 1 .26 ----. .17 -.36 -.10 ----------. 02 -.oo4 .04 --------------------------------

100 -. 02 1 -. 37 ---. 13 .65 -. 39 --------------- .oo3 .18 ----------.-------------- 0.o2 ----------

1000 .. .09 ---------- - 1 -. 10----------.------ 48 .95 -. 17 ----------------- .240.47-.08 ---- ).]i---

1.5 1 1 -.o4 .30 -.15 ------------ .04 .007 -.-Ol --------------- .002 .007 o.ooo6 ----------------------

10 1 -.o6 .39 -. 17 ------ .002 .06 .006 -. 02 --------------- .004.0l ----------------------------

30 1 -. 28 -. 99 -. 29 -------. 07 .34 .14 --------------- .01 -.o4 .02 ----------------------.---.---

100 -.16 1 .95 .05 -.06 -.72 -.95 -.15 --------.------ .19 -32 ---- ------.------------- 0.0-

1000 ------ -------- .94 -.40 ---------------- .28 1 -. 47 ------------------. l .50 -. 231--- .l ---

2 1 1 -. 03 .34 -. 33 -------. 006 .05 -. 04 -. 01 -----------. 003 .001 ---------- ---- -----------------

i0 1 -.04 -39 -. 28 -------. 004 .06 -. 05 -. O1 ---------- .004 .003 --------------------------------

30 1 -.13 .71 -. 21 ------ -. 02 .20 -.10 -.01 -----------. 03 .02--------------------------------

100.32 -.52 1 -106 - ... .34 .78 -. 16 ----------------. 06 .24---------------------- .04 -

1000 --- 1 -.02 -- -.5 0 .88 -.051 .-------------- -.32 .53 ------------- -----. 10 .22 ---------. 0

0dd determinant

8 a aJ 14 23 832 841 816 '25 834 843 a52 a27 a36 845 54 847 18 11o2 la 38
bII

1 1 1 1 -0.01 -0.28 -0.28 -0.01 ----.. 0.02 0.01 0.01 -0.02---------------------------------------

10 1 .83 -.02 -.31 -.28 -.01 ---- .02 .02 .02 -.02

30 1 -37 -.o8 -.46 -.26 -.01 "0.c7 -.01 .08 .03 ----------------------------------------------

100 1 .05 -.44 -.91 -.2o --. 0- 1 .16 -39 .10 ------------------ 0.07-------------------------

1000 ----------. 26 ---------------- 1 .54 .01 ---------- -0.92 -0.47 ------ 0.18 0.24 ---- 0.08 0-37

1.5 1 -. 46 1 ---- --. 2 .30 -.06 ----.. .008 -002 -03 .02 --------------- 0.003-------------------

10 -.61 1 ---- -.20 .41 -.09 --. 01 Ol -.01 .05 .01 ----- ------ ---- - 004-------------------

30 1 .56 -. 07 -. 56 -. 62 -.11 --. .01 .iu .16 .01

100 1 .05 --16 -.68 -.17 .06 .04 .25 .08 ------------------- 05-------------------------

1000 .04 ----- 1 -.07 ------ - 39 .90 -.13--- --------.19 .46 -.07 1-- .12--------

2 1-.28 1 -. 004 -. 07 .30 -. 12 - .005 .005 .03 .01 ----- - ---- - ---- - ---- - ---

10-38 1 -003 -13 .44 -. 18 --. o08 -. 00 .06 -003 .....

30 -.79 -.79 .03 .52 1 .26 - .0 .o2 -.LL -.30 -10

100 1 -.08 -.11 .66 -.26 - .02 .22-.12- ----------- ------ --. 003

1000 .0-6 --- 1 1 -. 17 -------------. 251 .99 -.29 ---------- -. 12 .51 -. 16- ---- .13 ---- -

NATIONAL ADVISORY
COM42TEE FOP AERONAUTICS
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TABLE 2.- THEORETICAL CRITICAL-SHEAR-STRESS COEFFICIEI S

z ks
b Even determinant Odd determinant

1 0 9.35
1 9.44 11.59

10 11.65 12.77
30 18.57 17.59

100 34.65 33.55
1000 157.4 164.5

1.5 0 7.07 7.97
1 7.12 8.03

10 8.55 9.75
30 14.30 15.38

100 30.54 27.15
1000 136.6 129.7

2 1 6.62 6.65
10 7.65 8.43
30 12.48 14.29

100 26.96 26.19
1000 -17.3 118.9

ks
a Z Even determinant Odd determinant
b

1.5 1 7.37 7-99
10 10.38 9.49
30 15-523 15.51

100 32.24 30.73

2 1 6.68 6.61
10 8.98 8.95

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS



Fig. I NACA TN No. 1348

0,

0

w u

Cu

C0

Ca )

0J

4-j -- i

0j 0 1
Cu bfL

C\, C\"



NACA TN No. 1348 Fig. 2

a M"

____ rz Oj

.- ) U

C2J
01 00 U C U

__ ci) '

__ w

U0b

-0J



Fig. 3 NACA TN No. 1348

I < Strip

-- Cylinder

I I
NATIONAL ADVISOPY

COMMITTEE FOR AERONAUTICS

Figure 3.- Curved rectangular panel. Limiting cases for a complete
cylinder and an infinitely long strip also shown.



NACA TN No. 1348 Fig. 4
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Fig. 5 NACA TN No. 1348
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NACA TN No. 1348 Fig. 6
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Figure 6. - Estimated theoretical critical -shear -stress coefficients for
curved panels with clamped edges and having circumferential length
greater than axial length.



Fig. 7 NACA TN No. 1348
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Figure 7.- Estimated theoretical critical-shear-stress coefficients for
curved panels with clamped edges and having axial length greater
than circumferential length.



NACA TN No. 1348 Fig. 8
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Figure 8.- Transverse sectional views of specimens used to determine
critical shear stress of curved panels in various investigations.
Different length-width ratios of panels were obtained by varying
bulkhead or ring spacing and in some cases by spacing of
longitudinal stiffeners.



Fig. 9a NACA TN No. 1348
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(a) Specimens slightly affected by initial eccentricities.

Figure 9.- Comparison of theoretical critical- shear -stress coefficients
of simply supported curved panels with test results of other
investigatiors,



NACA TN No. 1348 Fig. 9b
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(b) Specimens considerably affected by initial eccentricities.

Figure 9.- Concluded.



Fig. 10 NACA TN No. 1348
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